Existence of Resonance Stability of Triangular Equilibrium Points in Circular Case of the Planar Elliptical Restricted Three-Body Problem under the Oblate and Radiating Primaries around the Binary System

Dublin Core

Title

Existence of Resonance Stability of Triangular Equilibrium Points in Circular Case of the Planar Elliptical Restricted Three-Body Problem under the Oblate and Radiating Primaries around the Binary System

Description

This paper analyzes the existence of resonance stability of the triangular equilibrium points of the planar elliptical restricted three-body problem when both the primaries are oblate spheroid as well as the source of radiation under the particular case, when e=0. We have derived Hamiltonian function describing the motion of infinitesimal mass in the neighborhood of the triangular equilibrium solutions taken as a convergent series. Hamiltonian function for the system has been derived and also expanded in powers of the generalized components of momenta. We have used canonical transformation to make the Hamiltonian function independent of true anomaly. The most interesting and distinguishable results of this study are establishing the relation for determining the range of stability at and near the resonance ω2=1/2 around the binary system.

Creator

A. Narayan
Amit Shrivastava

Publisher

Advances in Astronomy

Date

2014

Rights

Copyright © 2014 A. Narayan and Amit Shrivastava.

Language

en

Type

Research Article

Identifier

https://doi.org/10.1155/2014/287174

Collection

Citation

A. Narayan and Amit Shrivastava, “Existence of Resonance Stability of Triangular Equilibrium Points in Circular Case of the Planar Elliptical Restricted Three-Body Problem under the Oblate and Radiating Primaries around the Binary System,” Open Access Journal Archives, accessed August 2, 2021, http://oajour.info/items/show/894.